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This article considers the effects of turbulent

fluctuations in dielectric permeability on the charac-

teristics of a light beam vhich are described by its

2nd order coherence function. The majority of theo-

retical studios dealing with the propagation of light

in homogeneous mediums consider purely coherent radia-

tion sources. However the degree of coherence of the

source ;an be an important factor in a number of cases

even when we are interested in such comparatively

coarse characteristic as the mean light intensity.

Below we consider the sources of partially coherent

radiation in a turbulentatmosphere and investigate

the effect of the degree of coherence of the source

on the characteristiosof the light beam.

Let us consider the light mourcein the

,•= U plano. Its coherence function is

1' (R,'p) u. .(RR+ (1/2) p) ;(R- (1/2) p), ( -
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where u is the field .n the plane x = 0
0

and the bar denotes averaging of the field u

over the fluctuations. For a completely coherent source

ro the function has the form of a product.

,(R, p)-,i,0(R + (I/2)p), uo(R -(1.2) p)a ( La)

so that in this case the modulus of the complex

coherence [l j is equal to unity.
IT(A 01 r(, ) .

I I1'*(R+-0I/2) p, 0) I'I(R--(l2) p, 1)1 I'12
In a turbulent medium the coherence tunction is

r (x, R, u R + (1 2) p) R* (x, R - (/2) p) 'r
where it (X\, R

is the field at the distance x from the source and

the brackets denote averaging over the fluctaations

in the dielectric permeability. It satisfies the

equation derived by Dotlin L2j (See also [3-51).

"- *---VR vR 1' + ?-H (sp)1 .- , (2)

Here I-)(x, p) 2 S 41, (x, %) cosp)d1 (3)
and 4), (x, ;) -, 4%h, (X; 0, v, y.,p.is. tne ttIVLO-dimensional spiectrn L

density of' the fluctuations in the dielectric parmea-

biliLy wiiich Is a smooth function of the longitudinal

coordinate x.

Th', solution of oquation(2)with initial condition

(I•) has the form [31

0;

S k~ -k 2 d ', R, il p'P (Rl', P,) .xp 1) fk (P. P,)

8. (4)

• --. •l __ "1", ' +

X1 , P x
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When the function V'(R' p-- i2)p)u 0 R--(.2)')

which appears in (4) is considured as a random function

and Lt is averaged over the fluctuations u, we obtain

at) expression for the function 1'(X, R. P), 01

corresponding to a partially coherent light source,

with an initial coherence function in the general form

We will now consider some consequences which follow

from formula (4). We integrate (4) with respect to R

and we introduce the notation

"V (x, p) -- S ' (x. R, p) d2I, 70(p) -, 1 (0, p).

Then on the basis of (4), we obtain the simple

relation
Ar

TAX. F) '- 704() e'XP I- , I1(.x', p) dx' ](6)
for the coherence function nveraged over the beam [3].

The immediate physical meaning of YAx,P) is that

it determines the angular spectrum of the light beam.

In fact when we place a lens in the jlane x = const

which intercepts the entire beam and considem the

distribution of the intensity in its focal planethe

iann valul of the intensity I at th" diotanr-e r from the

optical axis of the lens will be proportional to

4
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where f is the focal length or tha lens. Thus the

cha~a,;teristic scal.. ot' the functionY (X,P) over P

detertiines the angular beam width. Ve will call this

characteristic scale the "effective radius of coherence."

It should be noted that the effective radius of

coherence which was introduced in this way does. not

coincide with the radius of coherence which is defined

as the characteristic scale of the complex degree of

coherence Y. F'or example let us consider a pure

coherent light source with a field distribution

in its planto In the form

"ul(p) A exp P - ,

Here a is the characteristic dimension of the beam,

F is the radius of curvature of its piase front (when

F( 0 the beam diverges). The complex degree of coherence

corresponding to (b)is equal in modulus to unitY since

the radius oiC couhoence of such a source is infinite,

At the same uime the function -;,(p), corresponding to

(8) i• equal to

)( , j (9)

and

, -i. (10)
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When otar e.•mnilcIFV- , =

even though the beam under consideration is completely

coherent. The infinite radius of coherence for a

source of type ( 8 )

indicates in principle the possibility of obtaining

"for it a sharp interference pattern with ImIn = 0.

When for example, one of the apertures of the interf'ero-

meter is placed on the axis of the beam and the

other at a distance on the order a from it, to obtain

ýhe interference pattern with Tmin= 0

an attennuator is needed which equalizes the inten-

sities at both apertures. When ,iucn an attennuator

in not used, the inter fuence pattern will spread

at distances on the order of Cerf"

Thu.s Petef determines not only the aigular

beam width but has also direct relevance on the pos-

sibillty of obtaining an interf:4rence patturn when

aittiplitude-phbase ajitistors are not used.

Let us consider the case when the light souxckj has

partial or three dimsnslonal coherence. Suppose for

example PA - s -Aa ex - - + I '.(Pi) ! •

whereý(p) is the random phase whose mean value it equal to

0 and has a Gaussian di.stribution. When
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we obtain easily for the function Io(I(, p)

the formula
r 0( R, p ) - JA IJ ex p R.... F (p) •

In this case the function 7y (P)

has the form

o(p) na[ A( )exp + ,p]

Formult (9) wcus obtained taking into acco,'nt the

well known equality

exp IiIjf,(P)7j(•)- FI) - exp - - - PI ) -)

In subsequent calculations we will use a quadratic

approximation of the function F(P)

F (p) -- ,2' ,.

where PK is the vadius of coherence of the source wh Lch

is the characteristic scale of the complex degree ofr

coherence "( R, p). We note that is related to

thie angular beam width Y'v in the region ,\';x,

(where Its direct~vity pattern was formed)by the

express ion

I f*j T. / " Xý,'-.

which enables us to estimate •.

7
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Then

4 f2 :v (9a)'

Let us return to relation (6) and consider the

case of a statistioally homogeneous turbulent medium

for which the structural dielectric permeability

function can be approximated by the expression

D. (A,, p).• C" (.v)I•"4 •/"-1, .( t

The spectral density

41,, (4) : NC llIl"'' (.,/,)-l" K, ('• l ,

jN -, 19 L, ):("p5/3)1- . (12)

corresponds to structural function (11).

We note that the representation of the spectral

density in the form (12) approximates well the experi-

mental data [6] with respect to the temperature flue-

tuations both in the inertial and in the viscous spec-

tr&,L &nterval. On the other hand expression (11)

has a simple form and it is convenient to approximate

the structural function both in the Inertial and vxs-

cous Interval. The scale 1. is related to the
U

scale ;.,,, which is defined as the point of interLection

of tho asymptotic expansions D.([) P' and D,(P)• ;

84K/



by the relitiorn

, ' -- 3".

Substituting (12) in (3 after the integral is

evaluated we obtai.n the formula

II(,, P) .. c-2(x)*(. ),, I. I Ul,

M r-(/} • 0,464. (1
,5 i)r r (5 3)

and in accordance with (90 (l3)and(16)we find the co-

herence function averagal in the plane

I

4 "" x(p' + 1' Ia)

where we usedthe notation

C'- 3Ck(x') dx'.
xJ

Formula (14) enables us to investigate the behavior

of the quantity P* in a turbulent medium. When we

define •, as that value of' p, for which ;(., •) dec-

creases e times in comparson "•(,O) , we obtain fut' P

the equation

'' j-h- .4- A1C; k"A(P•+ I•)'--i "I•4, (15)

whose solution has the form

r,2 10(16)
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lie re 2 17I 4 1 -i . I K . . . . .2ik a

-k I

and •(]) is a root of the equation

+!, + • .• • • .( 1 7 )

In the region 'I, which corresponds to ,,

the function • is

In this case

When the conditions B B-, are satisfied simul-

taneously, we obtain from (18)

P; • - B > a>, B >.1, (1a)

and the effective radius ot' coherence is smtiall in com-

parison with the internal turbulence scale i 0

When Bl, but B<<I, i e. 2<<B,<, •,o obtain

from (18)

S4 \611

In both cases (18a) and (18b) the radius or' co-

herence is determined only by the turbulence t)arr.1eters

and it does not depend on the initial t',rametersof

the bheam Therefore we can call the case B >>

1.0



t Ie case of st r'uno; t.Iih'i)iI[oncfl .

For the condition T ',1 which cuL a tSo hold w IIQ

B."/Ka or v .z , the sol ut Leo of equa tion (7) takes on the

or- -C2 -G +7

and we obtain instead of (L6)

4 -1 B ( + O(R) L9
A-W la 2 + k~aM F1 + I V .-- -J +o(f). (CL)

The last Cormula applies to the case oC weak tut,-

bulonce when the ef'foctive radius of" coherence is mainly

determined by the light Source,

Let us now consider the mean Intensity which can

be obtained from (4), by sotting r--0; . In the

previous model of the lig ht source after the qI uadrva tic

approximation of tzhe function o '( n ,,.

is substituted in (9), the oxpres..ion for k(.v, R) l '(x, R, (1)

can be reduced to the form

U2 x
Al' (20)Sp' -- -4-.. "I(x', ~ ( I--x' x)) dx j d,,.

0

aifter I ntk.)(,e lt ion with tropect to R' and the irngular

variablt related to p Iie'e we used the notation

g A) I - ~a'I. -1 - " .'-' r'
Iq ) -. j+

We note that the rad .us or coherence of the source r'

enters (20) only by way of the parameter ('(xi.

11
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When we consider a pure coherent light source for

which Is' t ,inetead of !q4(x) we obtain the function

(X) 1\ka X- ( 1a

and the expressions (20), (21) coincide with those

given in [3]. Thus the incomplete coherence of this

source in tle expression for the mean intensity is equi-

valent to some ehange in the initial radius of cuirvature F.

Let us consider in Greater detail the expression

for the mean intensity on the beam axis. We use the

samw model (1'3)for the function I/(x.1), and we

assume C,(x).-- constant. Then we obtain

easily for ]'(.V, O) the formula

(-V, 0) /o 1(x) P. Scxp 1--pt-.B -Q'+ 1 1~~~Id, f (22)

whsre

and B is defined by (16). The quantity Io(X) is tile

intensity on the beam axis from the same light source

in the absence of turbulence.

In the case of small p,expression (22) takes on

the asymptotic form

0(., -) ( exp(-- I -- l t'') dl f(. ) (23)

Bp'
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where Bp. We note that expression (23) is

easily obtained directly from (20) also in the case

of variable C. 1/6

For the condition Bp oi 1 the asymptote I1(x, p)-

= MC2(x)p5/3, which after substitution in (20),leadsC led

to expression (23) in which

•.I 2 '""I '2a" ( 1

g,( ,(x,
The function f(p) was studied in [3]. Here

where D1 .,%•, is thd root mean square fluctuation of

the complex phase for a spherical wave. Thus I

depends on the root mean square phase difference on

the base 2a/gl(x). When we consider a weak coherent

source for which p1 A (. &, Ok X \/3, •(,).-

and - In this case the intensity depends
K'

on the root mean square phase difference on the

radius of coherence.

The ratio of the mean intensity on the beam

axis for a partially and completely coherent source is

given in Fig. I as a fo.nction of Pk/a.

The different curves differ by the parameter i Coh

which is determined from expression (24), in which

13
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g, was replaced by g. When both inequalities

1j:o l, 1 )> 1, are satisfied, in both cases the

asymptotic formula [3] 1,lO 6..- 1149t'i•' ....

holds, and

and the quantitlemlcoh and Iincoh are close to one
"cobth meanitenit

another, i.e., in the region V •1 he mean intensity

no longer depends on the degree of coherence of the

source.

Fig. 1. Ratio of Mean Intensities on the
Beasi Axis For a Partially Coherent
And Completely Coherent Source (Curve
I when there is no turbulence, curvel,

c ooh=3, curve3, 1hcoh= 10

51
0,8
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